Internal
problem
ID
[13788]
Book
:
Differential
equations
and
the
calculus
of
variations
by
L.
ElSGOLTS.
MIR
PUBLISHERS,
MOSCOW,
Third
printing
1977.
Section
:
Chapter
1,
First-Order
Differential
Equations.
Problems
page
88
Problem
number
:
Problem
28
Date
solved
:
Wednesday, March 05, 2025 at 10:16:32 PM
CAS
classification
:
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]
ode:=diff(y(x),x) = (2*y(x)-x-4)/(2*x-y(x)+5); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==(2*y[x]-x-4)/(2*x-y[x]+5); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x - 2*y(x) + 4)/(2*x - y(x) + 5) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out