66.1.22 problem Problem 30

Internal problem ID [13790]
Book : Differential equations and the calculus of variations by L. ElSGOLTS. MIR PUBLISHERS, MOSCOW, Third printing 1977.
Section : Chapter 1, First-Order Differential Equations. Problems page 88
Problem number : Problem 30
Date solved : Wednesday, March 05, 2025 at 10:16:39 PM
CAS classification : [[_Riccati, _special]]

\begin{align*} y^{\prime }&=x +y^{2} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \end{align*}

Maple. Time used: 0.089 (sec). Leaf size: 35
ode:=diff(y(x),x) = x+y(x)^2; 
ic:=y(0) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \frac {\sqrt {3}\, \operatorname {AiryAi}\left (1, -x \right )+\operatorname {AiryBi}\left (1, -x \right )}{\sqrt {3}\, \operatorname {AiryAi}\left (-x \right )+\operatorname {AiryBi}\left (-x \right )} \]
Mathematica. Time used: 1.239 (sec). Leaf size: 80
ode=D[y[x],x]==x+y[x]^2; 
ic={y[0]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -\frac {x^{3/2} \operatorname {BesselJ}\left (-\frac {4}{3},\frac {2 x^{3/2}}{3}\right )-x^{3/2} \operatorname {BesselJ}\left (\frac {2}{3},\frac {2 x^{3/2}}{3}\right )+\operatorname {BesselJ}\left (-\frac {1}{3},\frac {2 x^{3/2}}{3}\right )}{2 x \operatorname {BesselJ}\left (-\frac {1}{3},\frac {2 x^{3/2}}{3}\right )} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x - y(x)**2 + Derivative(y(x), x),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : bad operand type for unary -: list