66.1.28 problem Problem 40

Internal problem ID [13796]
Book : Differential equations and the calculus of variations by L. ElSGOLTS. MIR PUBLISHERS, MOSCOW, Third printing 1977.
Section : Chapter 1, First-Order Differential Equations. Problems page 88
Problem number : Problem 40
Date solved : Wednesday, March 05, 2025 at 10:17:02 PM
CAS classification : [[_Riccati, _special]]

\begin{align*} y^{\prime }&=x -y^{2} \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=0 \end{align*}

Maple. Time used: 0.207 (sec). Leaf size: 37
ode:=diff(y(x),x) = x-y(x)^2; 
ic:=y(1) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \frac {\operatorname {AiryBi}\left (1, 1\right ) \operatorname {AiryAi}\left (1, x\right )-\operatorname {AiryBi}\left (1, x\right ) \operatorname {AiryAi}\left (1, 1\right )}{\operatorname {AiryBi}\left (1, 1\right ) \operatorname {AiryAi}\left (x \right )-\operatorname {AiryBi}\left (x \right ) \operatorname {AiryAi}\left (1, 1\right )} \]
Mathematica. Time used: 0.15 (sec). Leaf size: 229
ode=D[y[x],x]==x-y[x]^2; 
ic={y[1]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {i \left (x^{3/2} \left (-\operatorname {BesselJ}\left (-\frac {4}{3},\frac {2 i}{3}\right )+i \operatorname {BesselJ}\left (-\frac {1}{3},\frac {2 i}{3}\right )+\operatorname {BesselJ}\left (\frac {2}{3},\frac {2 i}{3}\right )\right ) \operatorname {BesselJ}\left (-\frac {2}{3},\frac {2}{3} i x^{3/2}\right )+x^{3/2} \operatorname {BesselJ}\left (-\frac {2}{3},\frac {2 i}{3}\right ) \operatorname {BesselJ}\left (-\frac {4}{3},\frac {2}{3} i x^{3/2}\right )+\operatorname {BesselJ}\left (-\frac {2}{3},\frac {2 i}{3}\right ) \left (x^{3/2} \left (-\operatorname {BesselJ}\left (\frac {2}{3},\frac {2}{3} i x^{3/2}\right )\right )-i \operatorname {BesselJ}\left (-\frac {1}{3},\frac {2}{3} i x^{3/2}\right )\right )\right )}{x \left (2 \operatorname {BesselJ}\left (-\frac {2}{3},\frac {2 i}{3}\right ) \operatorname {BesselJ}\left (-\frac {1}{3},\frac {2}{3} i x^{3/2}\right )+\left (-\operatorname {BesselJ}\left (-\frac {4}{3},\frac {2 i}{3}\right )+i \operatorname {BesselJ}\left (-\frac {1}{3},\frac {2 i}{3}\right )+\operatorname {BesselJ}\left (\frac {2}{3},\frac {2 i}{3}\right )\right ) \operatorname {BesselJ}\left (\frac {1}{3},\frac {2}{3} i x^{3/2}\right )\right )} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + y(x)**2 + Derivative(y(x), x),0) 
ics = {y(1): 0} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : bad operand type for unary -: list