69.1.29 problem 46

Internal problem ID [14182]
Book : DIFFERENTIAL and INTEGRAL CALCULUS. VOL I. by N. PISKUNOV. MIR PUBLISHERS, Moscow 1969.
Section : Chapter 8. Differential equations. Exercises page 595
Problem number : 46
Date solved : Tuesday, January 28, 2025 at 06:19:24 AM
CAS classification : [[_homogeneous, `class A`], _rational, _Bernoulli]

\begin{align*} x y^{2} y^{\prime }&=x^{3}+y^{3} \end{align*}

Solution by Maple

Time used: 0.024 (sec). Leaf size: 56

dsolve(x*y(x)^2*diff(y(x),x)=(x^3+y(x)^3),y(x), singsol=all)
 
\begin{align*} y &= \left (c_{1} +3 \ln \left (x \right )\right )^{{1}/{3}} x \\ y &= -\frac {\left (c_{1} +3 \ln \left (x \right )\right )^{{1}/{3}} \left (1+i \sqrt {3}\right ) x}{2} \\ y &= \frac {\left (c_{1} +3 \ln \left (x \right )\right )^{{1}/{3}} \left (i \sqrt {3}-1\right ) x}{2} \\ \end{align*}

Solution by Mathematica

Time used: 0.193 (sec). Leaf size: 63

DSolve[x*y[x]^2*D[y[x],x]==(x^3+y[x]^3),y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to x \sqrt [3]{3 \log (x)+c_1} \\ y(x)\to -\sqrt [3]{-1} x \sqrt [3]{3 \log (x)+c_1} \\ y(x)\to (-1)^{2/3} x \sqrt [3]{3 \log (x)+c_1} \\ \end{align*}