Internal
problem
ID
[13803]
Book
:
Differential
equations
and
the
calculus
of
variations
by
L.
ElSGOLTS.
MIR
PUBLISHERS,
MOSCOW,
Third
printing
1977.
Section
:
Chapter
1,
First-Order
Differential
Equations.
Problems
page
88
Problem
number
:
Problem
49
Date
solved
:
Wednesday, March 05, 2025 at 10:17:34 PM
CAS
classification
:
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]
ode:=diff(y(x),x) = (3*x-4*y(x)-2)/(3*x-4*y(x)-3); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==(3*x-4*y[x]-2)/(3*x-4*y[x]-3); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (3*x - 4*y(x) - 2)/(3*x - 4*y(x) - 3),0) ics = {} dsolve(ode,func=y(x),ics=ics)