Internal
problem
ID
[13806]
Book
:
Differential
equations
and
the
calculus
of
variations
by
L.
ElSGOLTS.
MIR
PUBLISHERS,
MOSCOW,
Third
printing
1977.
Section
:
Chapter
1,
First-Order
Differential
Equations.
Problems
page
88
Problem
number
:
Problem
52
Date
solved
:
Wednesday, March 05, 2025 at 10:17:42 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, _Bernoulli]
ode:=diff(y(x),x)-3*y(x)/x+x^3*y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]-3*y[x]/x+x^3*y[x]^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*y(x)**2 + Derivative(y(x), x) - 3*y(x)/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)