7.14.29 problem 29

Internal problem ID [454]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.2 (Series solution near ordinary points). Problems at page 216
Problem number : 29
Date solved : Tuesday, March 04, 2025 at 11:24:32 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \cos \left (x \right ) y^{\prime \prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 34
Order:=6; 
ode:=cos(x)*diff(diff(y(x),x),x)+y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {x^{2}}{2}\right ) y \left (0\right )+\left (x -\frac {1}{6} x^{3}-\frac {1}{60} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.002 (sec). Leaf size: 35
ode=Cos[x]*D[y[x],{x,2}]+y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (1-\frac {x^2}{2}\right )+c_2 \left (-\frac {x^5}{60}-\frac {x^3}{6}+x\right ) \]
Sympy. Time used: 0.880 (sec). Leaf size: 41
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + cos(x)*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {x^{4}}{24 \cos ^{2}{\left (x \right )}} - \frac {x^{2}}{2 \cos {\left (x \right )}} + 1\right ) + C_{1} x \left (- \frac {x^{2}}{6 \cos {\left (x \right )}} + 1\right ) + O\left (x^{6}\right ) \]