67.2.9 problem Problem 1(i)

Internal problem ID [13887]
Book : APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Dobrushkin. CRC Press 2015
Section : Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221
Problem number : Problem 1(i)
Date solved : Wednesday, March 05, 2025 at 10:21:16 PM
CAS classification : [_quadrature]

\begin{align*} y y^{\prime }&=1 \end{align*}

Maple. Time used: 0.007 (sec). Leaf size: 23
ode:=y(x)*diff(y(x),x) = 1; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \sqrt {c_{1} +2 x} \\ y &= -\sqrt {c_{1} +2 x} \\ \end{align*}
Mathematica. Time used: 0.011 (sec). Leaf size: 38
ode=y[x]*D[y[x],x]==1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {2} \sqrt {x+c_1} \\ y(x)\to \sqrt {2} \sqrt {x+c_1} \\ \end{align*}
Sympy. Time used: 0.290 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x)*Derivative(y(x), x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {C_{1} + 2 x}, \ y{\left (x \right )} = \sqrt {C_{1} + 2 x}\right ] \]