69.1.122 problem 181
Internal
problem
ID
[14275]
Book
:
DIFFERENTIAL
and
INTEGRAL
CALCULUS.
VOL
I.
by
N.
PISKUNOV.
MIR
PUBLISHERS,
Moscow
1969.
Section
:
Chapter
8.
Differential
equations.
Exercises
page
595
Problem
number
:
181
Date
solved
:
Tuesday, January 28, 2025 at 06:25:16 AM
CAS
classification
:
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
\begin{align*} y y^{\prime \prime }&={y^{\prime }}^{2}+1 \end{align*}
✓ Solution by Maple
Time used: 0.133 (sec). Leaf size: 55
dsolve(y(x)*diff(y(x),x$2)=1+diff(y(x),x)^2,y(x), singsol=all)
\begin{align*}
y &= \frac {c_{1} \left ({\mathrm e}^{\frac {x +c_{2}}{c_{1}}}+{\mathrm e}^{\frac {-x -c_{2}}{c_{1}}}\right )}{2} \\
y &= \frac {c_{1} \left ({\mathrm e}^{\frac {x +c_{2}}{c_{1}}}+{\mathrm e}^{\frac {-x -c_{2}}{c_{1}}}\right )}{2} \\
\end{align*}
✓ Solution by Mathematica
Time used: 0.971 (sec). Leaf size: 464
DSolve[y[x]*D[y[x],{x,2}]==1+(D[y[x],x])^2,y[x],x,IncludeSingularSolutions -> True]
\begin{align*}
y(x)\to \text {InverseFunction}\left [-\frac {\sqrt {1-\text {$\#$1}^2 e^{2 c_1}} \text {arcsinh}\left (\text {$\#$1} \sqrt {-e^{2 c_1}}\right )}{\sqrt {-e^{2 c_1}} \sqrt {-1+\text {$\#$1}^2 e^{2 c_1}}}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {\sqrt {1-\text {$\#$1}^2 e^{2 c_1}} \text {arcsinh}\left (\text {$\#$1} \sqrt {-e^{2 c_1}}\right )}{\sqrt {-e^{2 c_1}} \sqrt {-1+\text {$\#$1}^2 e^{2 c_1}}}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [-\frac {\sqrt {1-\text {$\#$1}^2 e^{2 (-c_1)}} \text {arcsinh}\left (\text {$\#$1} \sqrt {-e^{2 (-c_1)}}\right )}{\sqrt {-e^{2 (-c_1)}} \sqrt {-1+\text {$\#$1}^2 e^{2 (-c_1)}}}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {\sqrt {1-\text {$\#$1}^2 e^{2 (-c_1)}} \text {arcsinh}\left (\text {$\#$1} \sqrt {-e^{2 (-c_1)}}\right )}{\sqrt {-e^{2 (-c_1)}} \sqrt {-1+\text {$\#$1}^2 e^{2 (-c_1)}}}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [-\frac {\sqrt {1-\text {$\#$1}^2 e^{2 c_1}} \text {arcsinh}\left (\text {$\#$1} \sqrt {-e^{2 c_1}}\right )}{\sqrt {-e^{2 c_1}} \sqrt {-1+\text {$\#$1}^2 e^{2 c_1}}}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {\sqrt {1-\text {$\#$1}^2 e^{2 c_1}} \text {arcsinh}\left (\text {$\#$1} \sqrt {-e^{2 c_1}}\right )}{\sqrt {-e^{2 c_1}} \sqrt {-1+\text {$\#$1}^2 e^{2 c_1}}}\&\right ][x+c_2] \\
\end{align*}