69.1.129 problem 188

Internal problem ID [14282]
Book : DIFFERENTIAL and INTEGRAL CALCULUS. VOL I. by N. PISKUNOV. MIR PUBLISHERS, Moscow 1969.
Section : Chapter 8. Differential equations. Exercises page 595
Problem number : 188
Date solved : Tuesday, January 28, 2025 at 06:25:36 AM
CAS classification : [_Bernoulli]

\begin{align*} x y^{\prime }+y-y^{2} \ln \left (x \right )&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 13

dsolve(x*diff(y(x),x)+y(x)-y(x)^2*ln(x)=0,y(x), singsol=all)
 
\[ y = \frac {1}{1+c_{1} x +\ln \left (x \right )} \]

Solution by Mathematica

Time used: 0.147 (sec). Leaf size: 20

DSolve[x*D[y[x],x]+y[x]-y[x]^2*Log[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {1}{\log (x)+c_1 x+1} \\ y(x)\to 0 \\ \end{align*}