Internal
problem
ID
[13908]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
4,
Second
and
Higher
Order
Linear
Differential
Equations.
Problems
page
221
Problem
number
:
Problem
5(d)
Date
solved
:
Wednesday, March 05, 2025 at 10:21:57 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=x*diff(diff(y(x),x),x)+2*x^2*diff(y(x),x)+y(x)*sin(x) = sinh(x); ic:=y(0) = 1, D(y)(0) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+2*x^2*D[y[x],x]+y[x]*Sin[x]==Sinh[x]; ic={y[0]==1,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x**2*Derivative(y(x), x) + x*Derivative(y(x), (x, 2)) + y(x)*sin(x) - sinh(x),0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 1} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) + (x*Derivative(y(x), (x, 2)) + y(x)*sin(x) - sinh(x))/(2*x**2) cannot be solved by the factorable group method