70.1.9 problem 2.2 (iii)

Internal problem ID [14299]
Book : Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition 1999. Oxford Univ. Press. NY
Section : Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number : 2.2 (iii)
Date solved : Tuesday, January 28, 2025 at 06:25:58 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=x \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=2 x \left (t \right )-3 y \left (t \right ) \end{align*}

Solution by Maple

Time used: 0.069 (sec). Leaf size: 23

dsolve([diff(x(t),t)=x(t),diff(y(t),t)=2*x(t)-3*y(t)],singsol=all)
 
\begin{align*} x \left (t \right ) &= c_{2} {\mathrm e}^{t} \\ y \left (t \right ) &= \frac {c_{2} {\mathrm e}^{t}}{2}+{\mathrm e}^{-3 t} c_{1} \\ \end{align*}

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 38

DSolve[{D[x[t],t]==x[t],D[y[t],t]==2*x[t]-3*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} x(t)\to c_1 e^t \\ y(t)\to \frac {1}{2} e^{-3 t} \left (c_1 \left (e^{4 t}-1\right )+2 c_2\right ) \\ \end{align*}