Internal
problem
ID
[13921]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
4,
Second
and
Higher
Order
Linear
Differential
Equations.
Problems
page
221
Problem
number
:
Problem
18(h)
Date
solved
:
Wednesday, March 05, 2025 at 10:22:19 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=ln(x^2+1)*diff(diff(y(x),x),x)+4*x/(x^2+1)*diff(y(x),x)+(-x^2+1)/(x^2+1)^2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=Log[1+x^2]*D[y[x],{x,2}]+4*x/(1+x^2)*D[y[x],x]+(1-x^2)/(1+x^2)^2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x*Derivative(y(x), x)/(x**2 + 1) + (1 - x**2)*y(x)/(x**2 + 1)**2 + log(x**2 + 1)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x**4*log(x**2 + 1)*Derivative(y(x), (x, 2)) + x**2*y(x) - 2*x**2*log(x**2 + 1)*Derivative(y(x), (x, 2)) - y(x) - log(x**2 + 1)*Derivative(y(x), (x, 2)))/(4*x*(x**2 + 1)) cannot be solved by the factorable group method