Internal
problem
ID
[13929]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
4,
Second
and
Higher
Order
Linear
Differential
Equations.
Problems
page
221
Problem
number
:
Problem
19(d)
Date
solved
:
Wednesday, March 05, 2025 at 10:23:27 PM
CAS
classification
:
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]
ode:=y(x)*diff(diff(y(x),x),x)*sin(x)+(sin(x)*diff(y(x),x)+cos(x)*y(x))*diff(y(x),x) = cos(x); dsolve(ode,y(x), singsol=all);
ode=y[x]*D[y[x],{x,2}]*Sin[x]+ ( D[y[x],x]*Sin[x]+y[x]*Cos[x] )*D[y[x],x]==Cos[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((y(x)*cos(x) + sin(x)*Derivative(y(x), x))*Derivative(y(x), x) + y(x)*sin(x)*Derivative(y(x), (x, 2)) - cos(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
PolynomialDivisionFailed : couldnt reduce degree in a polynomial division algorithm when dividing [[], [ANP([mpq(-1,1)], [mpq(1,1), mpq(0,1), mpq(1,1)], QQ), ANP([mpq(4,1), mpq(0,1)], [mpq(1,1), mpq(0,1), mpq(1,1)], QQ), ANP([mpq(6,1)], [mpq(1,1), mpq(0,1), mpq(1,1)], QQ), ANP([mpq(-4,1), mpq(0,1)], [mpq(1,1), mpq(0,1), mpq(1,1)], QQ), ANP([], [mpq(1,1), mpq(0,1), mpq(1,1)], QQ)]] by [[ANP([mpq(1,1)], [mpq(1,1), mpq(0,1), mpq(1,1)], QQ), ANP([mpq(-2,1), mpq(0,1)], [mpq(1,1), mpq(0,1), mpq(1,1)], QQ), ANP([mpq(-2,1)], [mpq(1,1), mpq(0,1), mpq(1,1)], QQ)]]. This can happen when its not possible to detect zero in the coefficient domain. The domain of computation is QQ<I>. Zero detection is guaranteed in this coefficient domain. This may indicate a bug in SymPy or the domain is user defined and doesnt implement zero detection properly.