7.15.6 problem 6

Internal problem ID [462]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.3 (Regular singular points). Problems at page 231
Problem number : 6
Date solved : Tuesday, March 04, 2025 at 11:24:43 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.007 (sec). Leaf size: 27
Order:=6; 
ode:=x^2*(-x^2+1)*diff(diff(y(x),x),x)+2*x*diff(y(x),x)-2*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 x \left (1+\operatorname {O}\left (x^{6}\right )\right )+\frac {c_2 \left (12-36 x^{2}+\operatorname {O}\left (x^{6}\right )\right )}{x^{2}} \]
Mathematica. Time used: 0.014 (sec). Leaf size: 16
ode=x^2*(1-x^2)*D[y[x],{x,2}]+2*x*D[y[x],x]-2*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {1}{x^2}-3\right )+c_2 x \]
Sympy. Time used: 1.046 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*(1 - x**2)*Derivative(y(x), (x, 2)) + 2*x*Derivative(y(x), x) - 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} x + \frac {C_{1}}{x^{2}} + O\left (x^{6}\right ) \]