Internal
problem
ID
[13956]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
5.5
Laplace
transform.
Homogeneous
equations.
Problems
page
357
Problem
number
:
Problem
18
Date
solved
:
Wednesday, March 05, 2025 at 10:24:13 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
Using Laplace method With initial conditions
ode:=2*diff(diff(y(t),t),t)+20*diff(y(t),t)+51*y(t) = 0; ic:=y(0) = 1, D(y)(0) = -5; dsolve([ode,ic],y(t),method='laplace');
ode=2*D[y[t],{t,2}]+20*D[y[t],t]+51*y[t]==0; ic={y[0]==1,Derivative[1][y][0] ==-5}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(51*y(t) + 20*Derivative(y(t), t) + 2*Derivative(y(t), (t, 2)),0) ics = {y(0): 1, Subs(Derivative(y(t), t), t, 0): -5} dsolve(ode,func=y(t),ics=ics)