Internal
problem
ID
[13971]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
5.6
Laplace
transform.
Nonhomogeneous
equations.
Problems
page
368
Problem
number
:
Problem
2(f)
Date
solved
:
Wednesday, March 05, 2025 at 10:24:27 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using Laplace method With initial conditions
ode:=2*diff(diff(y(t),t),t)-3*diff(y(t),t)+17*y(t) = 17*t-1; ic:=y(0) = -1, D(y)(0) = 2; dsolve([ode,ic],y(t),method='laplace');
ode=2*D[y[t],{t,2}]-3*D[y[t],t]+17*y[t]==17*t-1; ic={y[0]==-1,Derivative[1][y][0] ==2}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-17*t + 17*y(t) - 3*Derivative(y(t), t) + 2*Derivative(y(t), (t, 2)) + 1,0) ics = {y(0): -1, Subs(Derivative(y(t), t), t, 0): 2} dsolve(ode,func=y(t),ics=ics)