Internal
problem
ID
[13976]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
5.6
Laplace
transform.
Nonhomogeneous
equations.
Problems
page
368
Problem
number
:
Problem
2(j)[k]
Date
solved
:
Wednesday, March 05, 2025 at 10:24:32 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using Laplace method With initial conditions
ode:=4*diff(diff(y(t),t),t)-4*diff(y(t),t)+y(t) = t^2; ic:=y(0) = -12, D(y)(0) = 7; dsolve([ode,ic],y(t),method='laplace');
ode=4*D[y[t],{t,2}]-4*D[y[t],t]+y[t]==t^2; ic={y[0]==-12,Derivative[1][y][0] ==7}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t**2 + y(t) - 4*Derivative(y(t), t) + 4*Derivative(y(t), (t, 2)),0) ics = {y(0): -12, Subs(Derivative(y(t), t), t, 0): 7} dsolve(ode,func=y(t),ics=ics)