Internal
problem
ID
[13981]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
5.6
Laplace
transform.
Nonhomogeneous
equations.
Problems
page
368
Problem
number
:
Problem
3(b)
Date
solved
:
Wednesday, March 05, 2025 at 10:24:36 PM
CAS
classification
:
[[_linear, `class A`]]
Using Laplace method With initial conditions
ode:=diff(y(t),t)-2*y(t) = 4*t*(Heaviside(t)-Heaviside(t-2)); ic:=y(0) = 1; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],t]-2*y[t]==4*t*(UnitStep[t]-UnitStep[t-2]); ic={y[0]==1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-4*t*(Heaviside(t) - Heaviside(t - 2)) - 2*y(t) + Derivative(y(t), t),0) ics = {y(0): 1} dsolve(ode,func=y(t),ics=ics)