Internal
problem
ID
[14017]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
6.
Introduction
to
Systems
of
ODEs.
Problems
page
408
Problem
number
:
Problem
2(e)
Date
solved
:
Wednesday, March 05, 2025 at 10:26:17 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=3*diff(diff(y(t),t),t)+5*diff(y(t),t)-2*y(t) = 3*t^2; dsolve(ode,y(t), singsol=all);
ode=3*D[y[t],{t,2}]+5*D[y[t],t]-2*y[t]==3*t^2; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-3*t**2 - 2*y(t) + 5*Derivative(y(t), t) + 3*Derivative(y(t), (t, 2)),0) ics = {} dsolve(ode,func=y(t),ics=ics)