Internal
problem
ID
[14023]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
6.
Introduction
to
Systems
of
ODEs.
Problems
page
408
Problem
number
:
Problem
3(e)
Date
solved
:
Wednesday, March 05, 2025 at 10:26:23 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t)-3*x(t)+2*y(t) = 0, diff(y(t),t)-x(t)+3*y(t) = 0]; dsolve(ode);
ode={D[x[t],t]-3*x[t]+2*y[t]==0,D[y[t],t]-x[t]+3*y[t]==0}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-3*x(t) + 2*y(t) + Derivative(x(t), t),0),Eq(-x(t) + 3*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)