Internal
problem
ID
[14050]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
8.4
Systems
of
Linear
Differential
Equations
(Method
of
Undetermined
Coefficients).
Problems
page
520
Problem
number
:
Problem
1(b)
Date
solved
:
Wednesday, March 05, 2025 at 10:27:35 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 9*x(t)-3*y(t)-6*t, diff(y(t),t) = -x(t)+11*y(t)+10*t]; dsolve(ode);
ode={D[x[t],t]==9*x[t]-3*y[t]-6*t,D[y[t],t]==-x[t]+11*y[t]+10*t}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(6*t - 9*x(t) + 3*y(t) + Derivative(x(t), t),0),Eq(-10*t + x(t) - 11*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)