Internal
problem
ID
[14052]
Book
:
Differential
Equations,
Linear,
Nonlinear,
Ordinary,
Partial.
A.C.
King,
J.Billingham,
S.R.Otto.
Cambridge
Univ.
Press
2003
Section
:
Chapter
1
VARIABLE
COEFFICIENT,
SECOND
ORDER
DIFFERENTIAL
EQUATIONS.
Problems
page
28
Problem
number
:
Problem
1.1(b)
Date
solved
:
Wednesday, March 05, 2025 at 10:27:37 PM
CAS
classification
:
[_Lienard]
Using reduction of order method given that one solution is
ode:=x*diff(diff(y(x),x),x)+2*diff(y(x),x)+x*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],{x,2}]+2*D[y[x],x]+x*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*y(x) + x*Derivative(y(x), (x, 2)) + 2*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)