69.1.31 problem 48

Internal problem ID [14105]
Book : DIFFERENTIAL and INTEGRAL CALCULUS. VOL I. by N. PISKUNOV. MIR PUBLISHERS, Moscow 1969.
Section : Chapter 8. Differential equations. Exercises page 595
Problem number : 48
Date solved : Wednesday, March 05, 2025 at 10:33:30 PM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} 3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 2.044 (sec). Leaf size: 1814
ode:=3*y(x)-7*x+7-(3*x-7*y(x)-3)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {Expression too large to display} \]
Mathematica. Time used: 60.691 (sec). Leaf size: 7785
ode=(3*y[x]-7*x+7)-(3*x-7*y[x]-3)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy. Time used: 1.113 (sec). Leaf size: 31
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-7*x - (3*x - 7*y(x) - 3)*Derivative(y(x), x) + 3*y(x) + 7,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \log {\left (y{\left (x \right )} \right )} = C_{1} - \log {\left (\left (\frac {x - 1}{y{\left (x \right )}} - 1\right )^{\frac {2}{7}} \left (\frac {x - 1}{y{\left (x \right )}} + 1\right )^{\frac {5}{7}} \right )} \]