69.1.35 problem 53

Internal problem ID [14109]
Book : DIFFERENTIAL and INTEGRAL CALCULUS. VOL I. by N. PISKUNOV. MIR PUBLISHERS, Moscow 1969.
Section : Chapter 8. Differential equations. Exercises page 595
Problem number : 53
Date solved : Wednesday, March 05, 2025 at 10:34:20 PM
CAS classification : [[_homogeneous, `class A`], _exact, _dAlembert]

\begin{align*} \frac {x +y y^{\prime }}{\sqrt {x^{2}+y^{2}}}&=m \end{align*}

Maple. Time used: 0.114 (sec). Leaf size: 178
ode:=(x+y(x)*diff(y(x),x))/(x^2+y(x)^2)^(1/2) = m; 
dsolve(ode,y(x), singsol=all);
 
\[ \int _{\textit {\_b}}^{x}\frac {m \sqrt {\textit {\_a}^{2}+y^{2}}-\textit {\_a}}{-m \sqrt {\textit {\_a}^{2}+y^{2}}\, \textit {\_a} +y^{2}+\textit {\_a}^{2}}d \textit {\_a} -\int _{}^{y}\frac {\left (-1+\left (m \sqrt {\textit {\_f}^{2}+x^{2}}\, x -x^{2}-\textit {\_f}^{2}\right ) \left (\int _{\textit {\_b}}^{x}-\frac {2 \left (-\sqrt {\textit {\_a}^{2}+\textit {\_f}^{2}}\, \textit {\_a} +m \left (\textit {\_a}^{2}+\frac {\textit {\_f}^{2}}{2}\right )\right )}{\sqrt {\textit {\_a}^{2}+\textit {\_f}^{2}}\, \left (m \sqrt {\textit {\_a}^{2}+\textit {\_f}^{2}}\, \textit {\_a} -\textit {\_a}^{2}-\textit {\_f}^{2}\right )^{2}}d \textit {\_a} \right )\right ) \textit {\_f}}{m \sqrt {\textit {\_f}^{2}+x^{2}}\, x -x^{2}-\textit {\_f}^{2}}d \textit {\_f} +c_{1} = 0 \]
Mathematica. Time used: 2.146 (sec). Leaf size: 103
ode=(x+y[x]*D[y[x],x])/Sqrt[x^2+y[x]^2]==m; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {\left (m^2-1\right ) x^2-2 e^{c_1} m x+e^{2 c_1}} \\ y(x)\to \sqrt {\left (m^2-1\right ) x^2-2 e^{c_1} m x+e^{2 c_1}} \\ y(x)\to -\sqrt {\left (m^2-1\right ) x^2} \\ y(x)\to \sqrt {\left (m^2-1\right ) x^2} \\ \end{align*}
Sympy. Time used: 92.382 (sec). Leaf size: 354
from sympy import * 
x = symbols("x") 
m = symbols("m") 
y = Function("y") 
ode = Eq(-m + (x + y(x)*Derivative(y(x), x))/sqrt(x**2 + y(x)**2),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {- C_{1} + 2 m^{2} x^{2} - 2 \sqrt {2} m x \sqrt {- C_{1}} - 2 x^{2}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {- C_{1} + 2 m^{2} x^{2} - 2 \sqrt {2} m x \sqrt {- C_{1}} - 2 x^{2}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {- C_{1} + 2 m^{2} x^{2} + 2 \sqrt {2} m x \sqrt {- C_{1}} - 2 x^{2}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {- C_{1} + 2 m^{2} x^{2} + 2 \sqrt {2} m x \sqrt {- C_{1}} - 2 x^{2}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {- 2 \sqrt {2} \sqrt {C_{1}} m x + C_{1} + 2 m^{2} x^{2} - 2 x^{2}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {- 2 \sqrt {2} \sqrt {C_{1}} m x + C_{1} + 2 m^{2} x^{2} - 2 x^{2}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {2 \sqrt {2} \sqrt {C_{1}} m x + C_{1} + 2 m^{2} x^{2} - 2 x^{2}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {2 \sqrt {2} \sqrt {C_{1}} m x + C_{1} + 2 m^{2} x^{2} - 2 x^{2}}}{2}\right ] \]