71.10.4 problem 4

Internal problem ID [14499]
Book : Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section : Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210
Problem number : 4
Date solved : Tuesday, January 28, 2025 at 06:42:41 AM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }+16 y&=0 \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 65

dsolve(diff(y(x),x$4)+16*y(x)=0,y(x), singsol=all)
 
\[ y = -c_{1} {\mathrm e}^{-\sqrt {2}\, x} \sin \left (\sqrt {2}\, x \right )-c_{2} {\mathrm e}^{\sqrt {2}\, x} \sin \left (\sqrt {2}\, x \right )+c_{3} {\mathrm e}^{-\sqrt {2}\, x} \cos \left (\sqrt {2}\, x \right )+c_4 \,{\mathrm e}^{\sqrt {2}\, x} \cos \left (\sqrt {2}\, x \right ) \]

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 67

DSolve[D[y[x],{x,4}]+16*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to e^{-\sqrt {2} x} \left (\left (c_1 e^{2 \sqrt {2} x}+c_2\right ) \cos \left (\sqrt {2} x\right )+\left (c_4 e^{2 \sqrt {2} x}+c_3\right ) \sin \left (\sqrt {2} x\right )\right ) \]