Internal
problem
ID
[14153]
Book
:
DIFFERENTIAL
and
INTEGRAL
CALCULUS.
VOL
I.
by
N.
PISKUNOV.
MIR
PUBLISHERS,
Moscow
1969.
Section
:
Chapter
8.
Differential
equations.
Exercises
page
595
Problem
number
:
124
Date
solved
:
Wednesday, March 05, 2025 at 10:36:57 PM
CAS
classification
:
[[_2nd_order, _missing_y]]
With initial conditions
ode:=diff(diff(y(x),x),x)+tan(x)*diff(y(x),x) = sin(2*x); ic:=y(0) = -1, D(y)(0) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]+Tan[x]*D[y[x],x]==Sin[2*x]; ic={y[0]==-1,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-sin(2*x) + tan(x)*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(0): -1, Subs(Derivative(y(x), x), x, 0): 0} dsolve(ode,func=y(x),ics=ics)