69.1.101 problem 148

Internal problem ID [14175]
Book : DIFFERENTIAL and INTEGRAL CALCULUS. VOL I. by N. PISKUNOV. MIR PUBLISHERS, Moscow 1969.
Section : Chapter 8. Differential equations. Exercises page 595
Problem number : 148
Date solved : Wednesday, March 05, 2025 at 10:37:33 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-7 y^{\prime }+12 y&=x \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 21
ode:=diff(diff(y(x),x),x)-7*diff(y(x),x)+12*y(x) = x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{3 x} c_{2} +{\mathrm e}^{4 x} c_{1} +\frac {x}{12}+\frac {7}{144} \]
Mathematica. Time used: 0.014 (sec). Leaf size: 30
ode=D[y[x],{x,2}]-7*D[y[x],x]+12*y[x]==x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {x}{12}+c_1 e^{3 x}+c_2 e^{4 x}+\frac {7}{144} \]
Sympy. Time used: 0.168 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + 12*y(x) - 7*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{3 x} + C_{2} e^{4 x} + \frac {x}{12} + \frac {7}{144} \]