Internal
problem
ID
[14193]
Book
:
DIFFERENTIAL
and
INTEGRAL
CALCULUS.
VOL
I.
by
N.
PISKUNOV.
MIR
PUBLISHERS,
Moscow
1969.
Section
:
Chapter
8.
Differential
equations.
Exercises
page
595
Problem
number
:
170
Date
solved
:
Wednesday, March 05, 2025 at 10:39:30 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = y(t)+1, diff(y(t),t) = x(t)+1]; ic:=x(0) = -2y(0) = 0; dsolve([ode,ic]);
ode={D[x[t],t]==y[t]+1,D[y[t],t]==x[t]+1}; ic={x[0]==-2,y[0]==0}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-y(t) + Derivative(x(t), t) - 1,0),Eq(-x(t) + Derivative(y(t), t) - 1,0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)