70.1.6 problem 2.1 (vi)

Internal problem ID [14217]
Book : Nonlinear Ordinary Differential Equations by D.W.Jordna and P.Smith. 4th edition 1999. Oxford Univ. Press. NY
Section : Chapter 2. Plane autonomous systems and linearization. Problems page 79
Problem number : 2.1 (vi)
Date solved : Wednesday, March 05, 2025 at 10:40:18 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=2 x \left (t \right )+y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=-x \left (t \right )+y \left (t \right ) \end{align*}

Maple. Time used: 0.046 (sec). Leaf size: 81
ode:=[diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = y(t)-x(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= {\mathrm e}^{\frac {3 t}{2}} \left (\sin \left (\frac {\sqrt {3}\, t}{2}\right ) c_{1} +\cos \left (\frac {\sqrt {3}\, t}{2}\right ) c_{2} \right ) \\ y \left (t \right ) &= -\frac {{\mathrm e}^{\frac {3 t}{2}} \left (\sqrt {3}\, \sin \left (\frac {\sqrt {3}\, t}{2}\right ) c_{2} -\sqrt {3}\, \cos \left (\frac {\sqrt {3}\, t}{2}\right ) c_{1} +\sin \left (\frac {\sqrt {3}\, t}{2}\right ) c_{1} +\cos \left (\frac {\sqrt {3}\, t}{2}\right ) c_{2} \right )}{2} \\ \end{align*}
Mathematica. Time used: 0.016 (sec). Leaf size: 111
ode={D[x[t],t]==2*x[t]+y[t],D[y[t],t]==-x[t]+y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to \frac {1}{3} e^{3 t/2} \left (3 c_1 \cos \left (\frac {\sqrt {3} t}{2}\right )+\sqrt {3} (c_1+2 c_2) \sin \left (\frac {\sqrt {3} t}{2}\right )\right ) \\ y(t)\to \frac {1}{3} e^{3 t/2} \left (3 c_2 \cos \left (\frac {\sqrt {3} t}{2}\right )-\sqrt {3} (2 c_1+c_2) \sin \left (\frac {\sqrt {3} t}{2}\right )\right ) \\ \end{align*}
Sympy. Time used: 0.206 (sec). Leaf size: 99
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-2*x(t) - y(t) + Derivative(x(t), t),0),Eq(x(t) - y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - \left (\frac {C_{1}}{2} - \frac {\sqrt {3} C_{2}}{2}\right ) e^{\frac {3 t}{2}} \cos {\left (\frac {\sqrt {3} t}{2} \right )} + \left (\frac {\sqrt {3} C_{1}}{2} + \frac {C_{2}}{2}\right ) e^{\frac {3 t}{2}} \sin {\left (\frac {\sqrt {3} t}{2} \right )}, \ y{\left (t \right )} = C_{1} e^{\frac {3 t}{2}} \cos {\left (\frac {\sqrt {3} t}{2} \right )} - C_{2} e^{\frac {3 t}{2}} \sin {\left (\frac {\sqrt {3} t}{2} \right )}\right ] \]