7.15.38 problem 39

Internal problem ID [494]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.3 (Regular singular points). Problems at page 231
Problem number : 39
Date solved : Tuesday, March 04, 2025 at 11:25:18 AM
CAS classification : [_Bessel]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.020 (sec). Leaf size: 46
Order:=6; 
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+(x^2-1)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \frac {c_1 \,x^{2} \left (1-\frac {1}{8} x^{2}+\frac {1}{192} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+c_2 \left (\ln \left (x \right ) \left (x^{2}-\frac {1}{8} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+\left (-2+\frac {3}{32} x^{4}+\operatorname {O}\left (x^{6}\right )\right )\right )}{x} \]
Mathematica. Time used: 0.01 (sec). Leaf size: 58
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-1)*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_2 \left (\frac {x^5}{192}-\frac {x^3}{8}+x\right )+c_1 \left (\frac {1}{16} x \left (x^2-8\right ) \log (x)-\frac {5 x^4-16 x^2-64}{64 x}\right ) \]
Sympy. Time used: 0.813 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + (x**2 - 1)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{1} x \left (\frac {x^{4}}{192} - \frac {x^{2}}{8} + 1\right ) + O\left (x^{6}\right ) \]