Internal
problem
ID
[14269]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
1.
Introduction.
Exercises
1.3,
page
27
Problem
number
:
10
(d)
Date
solved
:
Wednesday, March 05, 2025 at 10:42:02 PM
CAS
classification
:
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
With initial conditions
ode:=x^2*diff(diff(y(x),x),x)-4*x*diff(y(x),x)+6*y(x) = 0; ic:=D(y)(1) = 3, D(y)(2) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+6*y[x]==0; ic={Derivative[1][y][1]==3,Derivative[1][y][2]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 4*x*Derivative(y(x), x) + 6*y(x),0) ics = {Subs(Derivative(y(x), x), x, 1): 3, Subs(Derivative(y(x), x), x, 2): 0} dsolve(ode,func=y(x),ics=ics)