71.3.13 problem 8

Internal problem ID [14284]
Book : Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section : Chapter 2. The Initial Value Problem. Exercises 2.1, page 40
Problem number : 8
Date solved : Wednesday, March 05, 2025 at 10:42:34 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=\frac {x}{y} \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 23
ode:=diff(y(x),x) = x/y(x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \sqrt {x^{2}+c_{1}} \\ y &= -\sqrt {x^{2}+c_{1}} \\ \end{align*}
Mathematica. Time used: 0.081 (sec). Leaf size: 35
ode=D[y[x],x]==x/y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {x^2+2 c_1} \\ y(x)\to \sqrt {x^2+2 c_1} \\ \end{align*}
Sympy. Time used: 0.230 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x/y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {C_{1} + x^{2}}, \ y{\left (x \right )} = \sqrt {C_{1} + x^{2}}\right ] \]