Internal
problem
ID
[496]
Book
:
Elementary
Differential
Equations.
By
C.
Henry
Edwards,
David
E.
Penney
and
David
Calvis.
6th
edition.
2008
Section
:
Chapter
3.
Power
series
methods.
Section
3.3
(Regular
singular
points).
Problems
at
page
231
Problem
number
:
41
Date
solved
:
Tuesday, March 04, 2025 at 11:25:21 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=x*(x-1)*(1+x)^2*diff(diff(y(x),x),x)+2*x*(x-3)*(1+x)*diff(y(x),x)-2*(x-1)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-1/4)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*(x - 3)*(x + 1)*Derivative(y(x), x) + x*(x - 1)*(x + 1)**2*Derivative(y(x), (x, 2)) - (2*x - 2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)