71.4.6 problem 6

Internal problem ID [14299]
Book : Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section : Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number : 6
Date solved : Wednesday, March 05, 2025 at 10:44:21 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} y^{\prime }&=\frac {y}{y-x} \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 31
ode:=diff(y(x),x) = y(x)/(y(x)-x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= x -\sqrt {x^{2}-2 c_{1}} \\ y &= x +\sqrt {x^{2}-2 c_{1}} \\ \end{align*}
Mathematica. Time used: 0.043 (sec). Leaf size: 38
ode=D[y[x],x]==y[x]/(y[x]-x); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{\frac {y(x)}{x}}\frac {K[1]-1}{(K[1]-2) K[1]}dK[1]=-\log (x)+c_1,y(x)\right ] \]
Sympy. Time used: 0.943 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - y(x)/(-x + y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = x - \sqrt {C_{1} + x^{2}}, \ y{\left (x \right )} = x + \sqrt {C_{1} + x^{2}}\right ] \]