71.4.9 problem 9

Internal problem ID [14302]
Book : Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section : Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number : 9
Date solved : Wednesday, March 05, 2025 at 10:44:33 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=\frac {x y}{1-y} \end{align*}

Maple. Time used: 0.035 (sec). Leaf size: 17
ode:=diff(y(x),x) = x*y(x)/(1-y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\operatorname {LambertW}\left (-{\mathrm e}^{\frac {x^{2}}{2}+c_{1}}\right ) \]
Mathematica. Time used: 0.126 (sec). Leaf size: 39
ode=D[y[x],x]==x*y[x]/(1-y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {K[1]-1}{K[1]}dK[1]\&\right ]\left [-\frac {x^2}{2}+c_1\right ] \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.363 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*y(x)/(1 - y(x)) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - W\left (C_{1} \sqrt {e^{x^{2}}}\right ) \]