71.6.15 problem 15

Internal problem ID [14342]
Book : Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section : Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63
Problem number : 15
Date solved : Wednesday, March 05, 2025 at 10:47:37 PM
CAS classification : [[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} y^{\prime }&=\frac {y^{2}}{1-x y} \end{align*}

Maple. Time used: 0.038 (sec). Leaf size: 17
ode:=diff(y(x),x) = y(x)^2/(1-x*y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {\operatorname {LambertW}\left (-x \,{\mathrm e}^{-c_{1}}\right )}{x} \]
Mathematica. Time used: 1.975 (sec). Leaf size: 25
ode=D[y[x],x]==y[x]^2/(1-x*y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {W\left (-e^{-c_1} x\right )}{x} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.398 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - y(x)**2/(-x*y(x) + 1),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - \frac {W\left (C_{1} x\right )}{x} \]