72.8.3 problem 4

Internal problem ID [14767]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number : 4
Date solved : Tuesday, January 28, 2025 at 07:14:35 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=-\sin \left (y\right )^{5} \end{align*}

Solution by Maple

Time used: 0.133 (sec). Leaf size: 190

dsolve(diff(y(t),t)=-sin(y(t))^5,y(t), singsol=all)
 
\[ y = \arctan \left (\frac {2 \,{\mathrm e}^{\operatorname {RootOf}\left ({\mathrm e}^{8 \textit {\_Z}}+8 \,{\mathrm e}^{6 \textit {\_Z}}+64 c_{1} {\mathrm e}^{4 \textit {\_Z}}+24 \,{\mathrm e}^{4 \textit {\_Z}} \textit {\_Z} +64 t \,{\mathrm e}^{4 \textit {\_Z}}-8 \,{\mathrm e}^{2 \textit {\_Z}}-1\right )}}{{\mathrm e}^{2 \operatorname {RootOf}\left ({\mathrm e}^{8 \textit {\_Z}}+8 \,{\mathrm e}^{6 \textit {\_Z}}+64 c_{1} {\mathrm e}^{4 \textit {\_Z}}+24 \,{\mathrm e}^{4 \textit {\_Z}} \textit {\_Z} +64 t \,{\mathrm e}^{4 \textit {\_Z}}-8 \,{\mathrm e}^{2 \textit {\_Z}}-1\right )}+1}, \frac {-{\mathrm e}^{2 \operatorname {RootOf}\left ({\mathrm e}^{8 \textit {\_Z}}+8 \,{\mathrm e}^{6 \textit {\_Z}}+64 c_{1} {\mathrm e}^{4 \textit {\_Z}}+24 \,{\mathrm e}^{4 \textit {\_Z}} \textit {\_Z} +64 t \,{\mathrm e}^{4 \textit {\_Z}}-8 \,{\mathrm e}^{2 \textit {\_Z}}-1\right )}+1}{{\mathrm e}^{2 \operatorname {RootOf}\left ({\mathrm e}^{8 \textit {\_Z}}+8 \,{\mathrm e}^{6 \textit {\_Z}}+64 c_{1} {\mathrm e}^{4 \textit {\_Z}}+24 \,{\mathrm e}^{4 \textit {\_Z}} \textit {\_Z} +64 t \,{\mathrm e}^{4 \textit {\_Z}}-8 \,{\mathrm e}^{2 \textit {\_Z}}-1\right )}+1}\right ) \]

Solution by Mathematica

Time used: 0.348 (sec). Leaf size: 48

DSolve[D[y[t],t]==-Sin[y[t]]^5,y[t],t,IncludeSingularSolutions -> True]
 
\begin{align*} y(t)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{10 \sin (K[1])-5 \sin (3 K[1])+\sin (5 K[1])}dK[1]\&\right ]\left [-\frac {t}{16}+c_1\right ] \\ y(t)\to 0 \\ \end{align*}