71.9.8 problem 8

Internal problem ID [14408]
Book : Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section : Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186
Problem number : 8
Date solved : Saturday, February 22, 2025 at 03:47:20 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+y&=0 \end{align*}

Maple. Time used: 0.000 (sec). Leaf size: 13
ode:=diff(diff(y(x),x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (x \right ) c_{1} +\cos \left (x \right ) c_{2} \]
Mathematica. Time used: 0.01 (sec). Leaf size: 16
ode=D[y[x],{x,2}]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \cos (x)+c_2 \sin (x) \]
Sympy. Time used: 0.044 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (x \right )} + C_{2} \cos {\left (x \right )} \]