Internal
problem
ID
[14434]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
4.
N-th
Order
Linear
Differential
Equations.
Exercises
4.4,
page
218
Problem
number
:
4
Date
solved
:
Saturday, February 22, 2025 at 03:48:30 PM
CAS
classification
:
[[_high_order, _missing_y]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-3*diff(diff(diff(y(x),x),x),x)+3*diff(diff(y(x),x),x)-diff(y(x),x) = 6*x-20-120*x^2*exp(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,4}]-3*D[y[x],{x,3}]+3*D[y[x],{x,2}]-D[y[x],x]==6*x-20-120*x^2*Exp[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(120*x**2*exp(x) - 6*x - Derivative(y(x), x) + 3*Derivative(y(x), (x, 2)) - 3*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)) + 20,0) ics = {} dsolve(ode,func=y(x),ics=ics)