Internal
problem
ID
[14441]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
4.
N-th
Order
Linear
Differential
Equations.
Exercises
4.5,
page
221
Problem
number
:
4
Date
solved
:
Saturday, February 22, 2025 at 03:48:34 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
With initial conditions
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+2*diff(diff(y(x),x),x)+y(x) = 3*x+4; ic:=y(0) = 0, D(y)(0) = 0, (D@@2)(y)(0) = 1, (D@@3)(y)(0) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,4}]+2*D[y[x],{x,2}]+y[x]==3*x+4; ic={y[0]==0,Derivative[1][y][0] ==0,Derivative[2][y][0] ==1,Derivative[3][y][0]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-3*x + y(x) + 2*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 4)) - 4,0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 0, Subs(Derivative(y(x), (x, 2)), x, 0): 1, Subs(Derivative(y(x), (x, 3)), x, 0): 1} dsolve(ode,func=y(x),ics=ics)