Internal
problem
ID
[14452]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
5.
The
Laplace
Transform
Method.
Exercises
5.2,
page
248
Problem
number
:
11
Date
solved
:
Thursday, March 13, 2025 at 03:30:42 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using Laplace method With initial conditions
ode:=diff(diff(y(x),x),x)+9*y(x) = x+2; ic:=y(0) = -1, D(y)(0) = 1; dsolve([ode,ic],y(x),method='laplace');
ode=D[y[x],{x,2}]+9*y[x]==x+2; ic={y[0]==-1,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x + 9*y(x) + Derivative(y(x), (x, 2)) - 2,0) ics = {y(0): -1, Subs(Derivative(y(x), x), x, 0): 1} dsolve(ode,func=y(x),ics=ics)