Internal
problem
ID
[14455]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
5.
The
Laplace
Transform
Method.
Exercises
5.2,
page
248
Problem
number
:
14
Date
solved
:
Thursday, March 13, 2025 at 03:30:45 AM
CAS
classification
:
[[_3rd_order, _missing_y]]
Using Laplace method With initial conditions
ode:=diff(diff(diff(y(x),x),x),x)+3*diff(diff(y(x),x),x)+2*diff(y(x),x) = x+cos(x); ic:=y(0) = 1, D(y)(0) = -1, (D@@2)(y)(0) = 2; dsolve([ode,ic],y(x),method='laplace');
ode=D[y[x],{x,3}]+3*D[y[x],{x,2}]+2*D[y[x],x]==x+Cos[x]; ic={y[0]==1,Derivative[1][y][0] ==-1,Derivative[2][y][0] ==2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x - cos(x) + 2*Derivative(y(x), x) + 3*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): -1, Subs(Derivative(y(x), (x, 2)), x, 0): 2} dsolve(ode,func=y(x),ics=ics)