7.16.16 problem 17

Internal problem ID [513]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.4 (Method of Frobenius: The exceptional cases). Problems at page 246
Problem number : 17
Date solved : Tuesday, March 04, 2025 at 11:25:44 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-x \left (1+x \right ) y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 46
Order:=6; 
ode:=x^2*diff(diff(y(x),x),x)-x*(1+x)*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = x \left (\left (c_2 \ln \left (x \right )+c_1 \right ) \left (1+x +\frac {1}{2} x^{2}+\frac {1}{6} x^{3}+\frac {1}{24} x^{4}+\frac {1}{120} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\left (-x -\frac {3}{4} x^{2}-\frac {11}{36} x^{3}-\frac {25}{288} x^{4}-\frac {137}{7200} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) c_2 \right ) \]
Mathematica. Time used: 0.004 (sec). Leaf size: 112
ode=x^2*D[y[x],{x,2}]-x*(1+x)*D[y[x],x]+y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 x \left (\frac {x^5}{120}+\frac {x^4}{24}+\frac {x^3}{6}+\frac {x^2}{2}+x+1\right )+c_2 \left (x \left (-\frac {137 x^5}{7200}-\frac {25 x^4}{288}-\frac {11 x^3}{36}-\frac {3 x^2}{4}-x\right )+x \left (\frac {x^5}{120}+\frac {x^4}{24}+\frac {x^3}{6}+\frac {x^2}{2}+x+1\right ) \log (x)\right ) \]
Sympy. Time used: 0.852 (sec). Leaf size: 27
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) - x*(x + 1)*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{1} x \left (\frac {x^{4}}{24} + \frac {x^{3}}{6} + \frac {x^{2}}{2} + x + 1\right ) + O\left (x^{6}\right ) \]