Internal
problem
ID
[14474]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
5.
The
Laplace
Transform
Method.
Exercises
5.5,
page
273
Problem
number
:
4
Date
solved
:
Thursday, March 13, 2025 at 03:31:11 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)+y(x) = 2*Dirac(x-1); ic:=y(0) = 0, D(y)(0) = 1; dsolve([ode,ic],y(x),method='laplace');
ode=D[y[x],{x,2}]-2*D[y[x],x]+y[x]==2*DiracDelta[x-1]; ic={y[0]==0,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*Dirac(x - 1) + y(x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 1} dsolve(ode,func=y(x),ics=ics)