Internal
problem
ID
[14482]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
7.
Systems
of
First-Order
Differential
Equations.
Exercises
page
329
Problem
number
:
6
Date
solved
:
Friday, March 14, 2025 at 04:47:53 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(y__1(x),x) = 5*y__1(x)/x+4*y__2(x)/x-2*x, diff(y__2(x),x) = -6*y__1(x)/x-5*y__2(x)/x+5*x]; ic:=y__1(-1) = 3y__2(-1) = -3; dsolve([ode,ic]);
ode={D[ y1[x],x]==5*y1[x]/x+4*y2[x]/x-2*x,D[ y2[x],x]==-6*y1[x]/x-5*y2[x]/x+5*x}; ic={y1[-1]==3,y2[-1]==-3}; DSolve[{ode,ic},{y1[x],y2[x]},x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y__1 = Function("y__1") y__2 = Function("y__2") ode=[Eq(2*x + Derivative(y__1(x), x) - 5*y__1(x)/x - 4*y__2(x)/x,0),Eq(-5*x + Derivative(y__2(x), x) + 6*y__1(x)/x + 5*y__2(x)/x,0)] ics = {} dsolve(ode,func=[y__1(x),y__2(x)],ics=ics)