71.18.10 problem 8
Internal
problem
ID
[14505]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
8.
Linear
Systems
of
First-Order
Differential
Equations.
Exercises
8.3
page
379
Problem
number
:
8
Date
solved
:
Thursday, March 13, 2025 at 03:31:47 AM
CAS
classification
:
system_of_ODEs
\begin{align*} \frac {d}{d x}y_{1} \left (x \right )&=5 y_{1} \left (x \right )-5 y_{2} \left (x \right )-5 y_{3} \left (x \right )\\ \frac {d}{d x}y_{2} \left (x \right )&=-y_{1} \left (x \right )+4 y_{2} \left (x \right )+2 y_{3} \left (x \right )\\ \frac {d}{d x}y_{3} \left (x \right )&=3 y_{1} \left (x \right )-5 y_{2} \left (x \right )-3 y_{3} \left (x \right ) \end{align*}
✓ Maple. Time used: 0.474 (sec). Leaf size: 70
ode:=[diff(y__1(x),x) = 5*y__1(x)-5*y__2(x)-5*y__3(x), diff(y__2(x),x) = -y__1(x)+4*y__2(x)+2*y__3(x), diff(y__3(x),x) = 3*y__1(x)-5*y__2(x)-3*y__3(x)];
dsolve(ode);
\begin{align*}
y_{1} \left (x \right ) &= {\mathrm e}^{2 x} \left (\sin \left (x \right ) c_{2} +c_{3} \cos \left (x \right )\right ) \\
y_{2} \left (x \right ) &= -\frac {\left (2 \sin \left (x \right ) c_{2} -c_{3} \sin \left (x \right )+\cos \left (x \right ) c_{2} +2 c_{3} \cos \left (x \right )-5 c_{1} \right ) {\mathrm e}^{2 x}}{5} \\
y_{3} \left (x \right ) &= {\mathrm e}^{2 x} \left (\sin \left (x \right ) c_{2} +c_{3} \cos \left (x \right )-c_{1} \right ) \\
\end{align*}
✓ Mathematica. Time used: 0.01 (sec). Leaf size: 109
ode={D[ y1[x],x]==5*y1[x]-5*y2[x]-5*y3[x],D[ y2[x],x]==-1*y1[x]+4*y2[x]+2*y3[x],D[ y3[x],x]==3*y1[x]-5*y2[x]-3*y3[x]};
ic={};
DSolve[{ode,ic},{y1[x],y2[x],y3[x]},x,IncludeSingularSolutions->True]
\begin{align*}
\text {y1}(x)\to e^{2 x} (c_1 \cos (x)+(3 c_1-5 (c_2+c_3)) \sin (x)) \\
\text {y2}(x)\to e^{2 x} (-c_1 (\sin (x)+\cos (x)-1)+c_3 (2 \sin (x)+\cos (x)-1)+c_2 (2 \sin (x)+\cos (x))) \\
\text {y3}(x)\to e^{2 x} (c_1 \cos (x)+(3 c_1-5 (c_2+c_3)) \sin (x)-c_1+c_3) \\
\end{align*}
✓ Sympy. Time used: 0.182 (sec). Leaf size: 94
from sympy import *
x = symbols("x")
y__1 = Function("y__1")
y__2 = Function("y__2")
y__3 = Function("y__3")
ode=[Eq(-5*y__1(x) + 5*y__2(x) + 5*y__3(x) + Derivative(y__1(x), x),0),Eq(y__1(x) - 4*y__2(x) - 2*y__3(x) + Derivative(y__2(x), x),0),Eq(-3*y__1(x) + 5*y__2(x) + 3*y__3(x) + Derivative(y__3(x), x),0)]
ics = {}
dsolve(ode,func=[y__1(x),y__2(x),y__3(x)],ics=ics)
\[
\left [ y^{1}{\left (x \right )} = - C_{1} e^{2 x} \sin {\left (x \right )} + C_{2} e^{2 x} \cos {\left (x \right )}, \ y^{2}{\left (x \right )} = - C_{3} e^{2 x} + \left (\frac {C_{1}}{5} - \frac {2 C_{2}}{5}\right ) e^{2 x} \cos {\left (x \right )} + \left (\frac {2 C_{1}}{5} + \frac {C_{2}}{5}\right ) e^{2 x} \sin {\left (x \right )}, \ y^{3}{\left (x \right )} = - C_{1} e^{2 x} \sin {\left (x \right )} + C_{2} e^{2 x} \cos {\left (x \right )} + C_{3} e^{2 x}\right ]
\]