Internal
problem
ID
[14510]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
8.
Linear
Systems
of
First-Order
Differential
Equations.
Exercises
8.3
page
379
Problem
number
:
13
Date
solved
:
Thursday, March 13, 2025 at 03:31:52 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(y__1(x),x) = 2*y__1(x)+y__2(x), diff(y__2(x),x) = -y__1(x)+2*y__2(x), diff(y__3(x),x) = 3*y__3(x)-4*y__4(x), diff(y__4(x),x) = 4*y__3(x)+3*y__4(x)]; dsolve(ode);
ode={D[ y1[x],x]==2*y1[x]+1*y2[x]+0*y3[x]+0*y4[x],D[ y2[x],x]==-1*y1[x]+2*y2[x]+0*y3[x]+0*y4[x],D[ y3[x],x]==0*y1[x]+0*y2[x]+3*y3[x]-4*y4[x],D[ y4[x],x]==0*y1[x]+0*y2[x]+4*y3[x]+3*y4[x]}; ic={}; DSolve[{ode,ic},{y1[x],y2[x],y3[x],y4[x]},x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y__1 = Function("y__1") y__2 = Function("y__2") y__3 = Function("y__3") y__4 = Function("y__4") ode=[Eq(-2*y__1(x) - y__2(x) + Derivative(y__1(x), x),0),Eq(y__1(x) - 2*y__2(x) + Derivative(y__2(x), x),0),Eq(-3*y__3(x) + 4*y__4(x) + Derivative(y__3(x), x),0),Eq(-4*y__3(x) - 3*y__4(x) + Derivative(y__4(x), x),0)] ics = {} dsolve(ode,func=[y__1(x),y__2(x),y__3(x),y__4(x)],ics=ics)