72.16.11 problem 11

Internal problem ID [14907]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number : 11
Date solved : Tuesday, January 28, 2025 at 07:19:34 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+4 y^{\prime }+13 y&=-3 \,{\mathrm e}^{-2 t} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=0 \end{align*}

Solution by Maple

Time used: 0.018 (sec). Leaf size: 16

dsolve([diff(y(t),t$2)+4*diff(y(t),t)+13*y(t)=-3*exp(-2*t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)
 
\[ y = \frac {{\mathrm e}^{-2 t} \left (\cos \left (3 t \right )-1\right )}{3} \]

Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 20

DSolve[{D[y[t],{t,2}]+4*D[y[t],t]+13*y[t]==-3*Exp[-2*t],{y[0]==0,Derivative[1][y][0] ==0}},y[t],t,IncludeSingularSolutions -> True]
 
\[ y(t)\to \frac {1}{3} e^{-2 t} (\cos (3 t)-1) \]