Internal
problem
ID
[14555]
Book
:
DIFFERENTIAL
EQUATIONS
by
Paul
Blanchard,
Robert
L.
Devaney,
Glen
R.
Hall.
4th
edition.
Brooks/Cole.
Boston,
USA.
2012
Section
:
Chapter
1.
First-Order
Differential
Equations.
Exercises
section
1.2.
page
33
Problem
number
:
37
Date
solved
:
Thursday, March 13, 2025 at 03:33:59 AM
CAS
classification
:
[_separable]
With initial conditions
ode:=diff(y(t),t) = 2*t*y(t)^2+3*t^2*y(t)^2; ic:=y(1) = -1; dsolve([ode,ic],y(t), singsol=all);
ode=D[y[t],t]==2*t*y[t]^2+3*t^2*y[t]^2; ic={y[1]==-1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-3*t**2*y(t)**2 - 2*t*y(t)**2 + Derivative(y(t), t),0) ics = {y(1): -1} dsolve(ode,func=y(t),ics=ics)